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Abstract 

 

School districts across the United States increasingly use value-added models (VAMs) to 

evaluate teachers. In practice, VAMs typically rely on lagged test scores from the previous 

academic year, which necessarily conflate summer with school-year learning and potentially bias 

estimates of teacher effectiveness. We investigate the practical implications of this problem by 

comparing estimates from “cross-year” VAMs to those from arguably more valid “within-year” 

VAMs using fall and spring test scores from the nationally representative  Early Childhood 

Longitudinal Study – Kindergarten Cohort (ECLS-K). “Cross-year” and “within-year” VAMs 

frequently yield significant differences that remain even after conditioning on participation in 

summer activities. 
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Closing persistent achievement gaps between students of different demographic and 

socioeconomic backgrounds is a primary goal of education policy in the United States. A 

growing consensus agrees that providing high-quality teachers to all students must play a 

prominent role in reaching this goal, though identifying effective teachers is difficult in practice 

(Baker et al., 2010; Harris, 2011; Nye et al., 2004). Value-added models (VAMs) that attempt to 

identify individual teachers’ contributions to gains in student achievement are gaining popularity, 

but remain controversial (Baker et al., 2010; Chetty, Friedman, & Rockoff, 2014; Glazerman et 

al., 2010; Harris, 2011; Hill, 2009; Kelly, 2012; McCaffrey et al., 2003; Papay, 2011). 

Intuitively, VAMs use previous achievement (lagged test scores) as a sufficient statistic, 

or proxy, for the unobserved history of family, educational, and individual inputs received by 

children (Harris, Sass, & Semykina, 2014; Todd & Wolpin, 2003). Doing so is important, as a 

consensus agrees that teachers should not be held accountable for student characteristics, such as 

past inputs, that are outside teachers’ control (Baker et al., 2010; Harris, 2011). A similar 

argument applies to controlling for current inputs that are outside teachers’ control (e.g., class 

size). Therefore, to produce unbiased estimates of teacher effects that can be given a causal 

interpretation, VAMs must control for all “current” inputs received by the child after they took 

the test that proxies for the unobserved historical inputs received by the child (i.e., the VAM’s 

lag score). Failing to adequately control for such inputs will potentially underestimate the 

effectiveness of teachers who teach relatively disadvantaged students (e.g., students who 

experience less supportive home and neighborhood environments), and vice versa. 

However, most VAM-based analyses rely on standardized tests that are administered 

once per year, either in the fall or spring (Downey, von Hippel, & Hughes, 2008; Harris, 2009; 

Papay, 2011; Winters & Cowen, 2013). For example, the value-added components of recent 
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teacher-assessment programs in Houston and Nashville relied on student assessments 

administered each spring. As a result, the lag score that proxies for unobserved historical inputs 

comes from the previous academic year and thus fails to control for inputs received, and learning 

that occurred, during the summer vacation. Students’ exposure to stimulating activities and 

supportive environments outside of the traditional school day, particularly during summer 

vacation, are outside of teachers’ control and should be controlled for in VAMs (Linn, 2009). For 

example, differences by socioeconomic status (SES) in children’s summer time use and exposure 

to parental involvement (Gershenson, 2013), participation in enriching summer activities (Chin 

& Phillips, 2004), and summer learning rates (Alexander, Entwisle, & Olson, 2001; Cooper et 

al., 1996) are well documented.  

Differential rates of summer learning threaten the validity of VAM-based analyses of the 

relationship between school inputs such as teachers and student achievement, as the common 

practice of evaluating students’ achievement growth from one academic year to the next 

necessarily conflates students’ summer learning with learning that occurred during the school 

year (Baker et al., 2010; Linn, 2009; Papay, 2011). Downey et al. (2008) and McEachin and 

Atteberry (2014) raise the same concerns regarding the evaluation of school performance. 

Specifically, the problem arises because the administrative data used to fit VAMs generally span 

the summer vacation but rarely, if ever, contain information on students’ summer activities. The 

current study contributes to our understanding of the validity, robustness, and best practices of 

VAM-based analyses of teacher effectiveness by investigating the practical implications of 

measuring achievement only once per academic year in the absence of data on summer activities.    

The empirical analysis utilizes both fall and spring test scores of the kindergarten and 

first-grade students surveyed by the nationally representative Early Childhood Longitudinal 
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Study – Kindergarten Cohort (ECLS-K). Specifically, we examine the validity of VAM-based 

rankings of classroom effects generated by VAMs that rely on annual test scores but fail to 

control for summer activities. Intuitively, we compare rankings generated by “cross-year” VAMs 

that rely on either spring-to-spring or fall-to-fall gains in achievement to analogous rankings 

generated by arguably more valid “within-year” VAMs that rely on fall-to-spring achievement 

gains. Because previous research suggests that summer learning rates are correlated with 

observed student and household characteristics, we also examine the ability of the student 

characteristics typically observed in administrative data, as well as richer measures of household 

characteristics and children’s summer activities typically unavailable in administrative data, to 

control for the summer learning inherent in “cross-year” VAMs (e.g., McCaffrey et al., 2003). 

 

Theoretical Background and Literature Review 

Summer Learning Loss 

 

Education researchers have long been interested in summer vacation’s effect on learning, 

which has also been referred to as “summer setback,” “summer learning loss,” and the “summer 

slide.” Several empirical studies have investigated the magnitude and correlates of summer 

learning loss; see Cooper et al. (1996) and Borman and Boulay (2004) for thorough reviews of 

this literature. On average, studies conducted prior to the 1970s generally found negative effects 

of summer vacation on math achievement and either no or mixed effects on reading and literacy 

achievement (Cooper et al., 1996). However, these early studies failed to account for 

heterogeneity in summer learning rates, which may have masked differences in the summer 

learning rates of students from different demographic and socioeconomic backgrounds. Of 
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course, summer learning rates are likely to vary across students for a variety of reasons 

(Gershenson, 2013), which may partially explain the mixed results in earlier studies.  

Borman et al. (2005) discuss four potentially interrelated mechanisms that may cause 

children in low-SES households to experience smaller achievement gains during the summer 

vacation than their more advantaged counterparts. First, investment models hypothesize that 

high-SES parents have the time and financial resources to invest in the development of children’s 

human capital during the summer vacation (Becker & Tomes, 1986). Investment models are 

conceptually similar to the “faucet theory” of Entwisle, Alexander, and Olson (2001), which 

posits that SES differences in summer learning rates are driven by high-SES households being 

better able to compensate when the flow of resources from the “school tap” is shut off. Second, 

SES differences in summer learning rates may result from different parenting strategies 

(Entwisle, Alexander, & Olson, 1997; Heyns, 1978; Lareau, 2003). Third, psychological models 

hypothesize that high-SES parents have higher expectations for children’s achievement and 

behavior, which may lead to higher rates of summer learning (Entwisle et al., 1997; Hoover-

Dempsey & Sandler, 1995). Finally, heterogeneity in either access or returns to participation in 

organized summer activities may exacerbate differences by SES in summer learning rates 

(Cooper et al., 2000). 

More recent studies of summer learning have documented significant differences by SES 

in the development of reading and literacy skills during summer vacation (e.g., Burkam et al., 

2004; Cooper et al., 1996; Downey, von Hippel, & Broh, 2004; Alexander et al., 2001; Heyns, 

1978). That these studies generally find differences by SES in summer reading and literacy gains 

but not in math gains is consistent with the finding that school inputs have relatively greater 

effects on math achievement than on reading achievement (e.g., Hanushek & Rivkin, 2010; 
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Jacob, 2005; Rivkin, Hanushek, & Kain, 2005; Rockoff, 2004). This may result from children 

being more likely to develop reading and literacy skills than math skills at home (Currie & 

Thomas, 2001) and high-SES households spending more time reading to/with children (Phillips, 

2011). 

However, the R2 of summer learning regressions than condition on student and household 

covariates are relatively small, suggesting that observed household characteristics and students’ 

summer activities only explain 8 to 13 percent of the variation in summer learning (e.g., Burkam 

et al., 2004; Downey et al., 2004). We return to this point below when considering the ability of 

statistical controls to control for summer learning in VAMs. Specifically, the empirical analysis 

will investigate the ability of observed student and household characteristics, as well as students’ 

summer activities, to control for the “summer learning bias” inherent in “cross-year” VAMs.  

 

Test Timing and Value-Added Models 

Numerous states and school districts now use estimates of teacher effectiveness generated 

by value-added models (VAMs) to make moderate-stakes decisions regarding teacher retention 

and merit pay (Armour-Garb, 2009; Harris et al., 2012; Kelly, 2012). Accountability policies 

often use similar methods to evaluate schools (McEachin & Atteberry, 2014). Most of these 

VAM-based analyses rely on standardized tests that are administered once per academic year, 

either in the fall or spring (Downey et al., 2008; Harris, 2009; McEachin & Atteberry, 2014; 

Papay, 2011; Winters & Cowen, 2013). Critics of these policies have stressed the problems 

associated with measuring achievement gains between, as opposed to within, academic years 

(Baker et al., 2010; Linn, 2009; Papay, 2011). Downey et al. (2008) and McEachin and Atteberry 

(2014) make a similar point regarding the use of VAMs to evaluate school-level performance, 
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and find nontrivial differences between measures of school performance that do and do not 

adjust for summer learning. Specifically, whether tests are administered each fall or each spring, 

the “cross-year” gain necessarily includes the gains and losses experienced during summer 

vacation (Downey et al., 2008). This is problematic if, as is likely the case, summer learning 

rates (i.e., students) are not randomly distributed across classrooms (Dieterle, Guarino, Reckase, 

& Wooldridge, 2015; Papay, 2011; Rothstein, 2010) and data on children’s summer activities are 

not available. For example, parental involvement, which is not observed in most administrative 

datasets, might create variation across classrooms in average summer learning as parental 

involvement potentially affects both summer learning (Gershenson, 2013) and classroom 

assignments (Dieterle et al., 2015). However, even if summer learning gains and losses are 

randomly distributed across students and classrooms, the mere presence of summer learning in 

cross-year VAMs adds noise to the error term that increases the probability that VAMs 

misclassify teachers. For these reasons, whenever variation in summer learning rates is present, 

within-year VAMs likely yield more accurate measures of teacher effectiveness than do cross-

year VAMs.     

Figure 1 shows how variation in summer learning can bias cross-year value-added 

estimates of teacher effectiveness. Suppose that there are two first-grade teachers who are 

equally effective and that each teacher is assigned one student (or one classroom). At the first 

time point depicted in figure 1, the spring of kindergarten, the two students (or classrooms) have 

identical achievement levels (test scores = 3). However, during the summer vacation between 

kindergarten and first grade, student A continued learning while student B experienced summer 

learning loss. The dashed lines’ slopes represent the students’ summer learning rates. As a result, 

students A and B entered first grade with test scores of 4 and 2, respectively. The solid lines’ 
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slopes represent the students’ first-grade (within-year) learning rates. Assuming that the two 

students have identical propensities for school-year learning and that all other schooling and 

home inputs are held constant, the solid lines’ slopes also represent teacher effectiveness. 

However, as discussed above, many states and districts use the previous spring’s test score as the 

lag score in VAMs and instead measure teacher effectiveness by taking the slope of the dotted 

lines (i.e., cross-year VAMs). As figure 1 makes clear, the cross-year VAM incorrectly indicates 

that student A’s teacher is more effective than student B’s teacher, as the dotted line for student 

A is steeper than that for student B. The actual magnitude of the bias might be even larger if, as 

the result of summer learning loss, B’s teacher spends more time re-teaching concepts from the 

previous academic year. This would limit B’s within-year academic growth, at no fault of the 

teacher, and lead to a flattening of B’s solid line in figure 1.         

The bias caused by variation across classrooms in summer learning loss could be 

significantly reduced either by administering tests on the first and last days of the academic year 

being tested or by controlling for rich measures of children’s summer activities and time use in 

cross-year VAMs. The former is impractical, however, as it would further increase the time and 

resources devoted to testing and potentially incentivize teachers to game the system by 

artificially depressing fall scores (Baker et al., 2010). Moreover, even if teachers did not 

strategically depress fall test scores, teachers who are effective early in the school year would not 

receive credit for student learning that occurred prior to the fall baseline test, and would actually 

be harmed by the resulting higher fall baseline scores in value-added analyses of teacher 

effectiveness. Nor is collecting and controlling for detailed data on students’ activities, parental 

involvement, and time use during the summer vacation a panacea, as doing so would be similarly 

costly and politically contentious (von Hippel, 2009). Accordingly, in the context of existing 
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policies and data limitations, the first-order policy-relevant questions regard the validity of 

estimates of teacher effectiveness generated by “cross-year” VAMs and the ability of basic 

demographic and SES variables to control for the differences in summer learning and home 

environments inherent in cross-year VAMs.  

To date, Papay (2011) is the only study to have empirically investigated the implications 

of summer learning for VAM-based rankings of teacher effectiveness. Using six years of 

matched student-teacher data on third- through fifth-grade student test scores from a large urban 

district in the Northeastern U.S., Papay estimated Spearman Rank Correlations between teacher-

effectiveness rankings generated by fall-to-spring and spring-to-spring gains on Scholastic 

Reading Inventory (SRI) tests of about 0.7. This suggests that the two rankings are highly, but 

not perfectly, positively correlated. The point estimate of 0.7 falls at the high range of 

comparable estimates of the stability of VAM-based rankings across both time and subjects 

(Goldhaber & Hansen, 2013; Loeb & Candelaria, 2012; Loeb, Kalogrides, & Beteille, 2012; 

McCaffrey et al., 2009). Critics of VAMs consider these correlations too low to justify using 

VAM-based estimates of teacher effectiveness to make high-stakes decisions (Hill, 2009).        

The current study extends Papay’s (2011) analysis of the robustness of VAM-based 

rankings of teacher effectiveness to differences in test timing in several ways. First, nationally-

representative ECLS-K data provide results that are more generalizable to smaller and non-urban 

districts. Second, we consider richer comparisons of the resulting rankings that provide a more 

nuanced view of the instability between “within-year” and “cross-year” VAMs, which we 

describe in the methods section. Third, we formally investigate the ability of conditioning on the 

student characteristics typically available in administrative datasets, as well as data on household 

characteristics and students’ summer activities, to mitigate the bias attributable to the summer 
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learning inherent in “cross-year” VAMs. Finally, because collecting detailed summer-activity 

data and testing at the start and end of the school year are arguably impractical in the immediate 

future, we consider whether fall-to-fall or spring-to-spring VAMs are potentially more valid. 

 

Data 

The current study utilizes data from the nationally representative Early Childhood 

Longitudinal Study – Kindergarten Cohort (ECLS-K). The ECLS-K is a longitudinal data set 

collected by the National Center for Education Statistics (NCES). The original sample of 

approximately 22,000 children from about 1,000 kindergarten programs was designed to be 

nationally representative of the cohort that began kindergarten in the 1998-99 academic year. 

The cohort nature of the ECLS-K means that teachers are only observed in one school year, thus 

we focus on estimating “classroom” rather than teacher effects, as further discussed in the 

methodology section. Because the ECLS-K oversampled certain subgroups of the population, all 

analyses are conducted using NCES-provided sampling weights that adjust for the survey’s 

nonrandom sampling frame. However, as suggested by Solon, Haider, and Wooldridge (2015), 

un-weighted estimates are considered as part of the sensitivity analysis.  

All children in the initial sample were surveyed in the fall and spring of kindergarten and 

the spring of first grade. However, the analytic sample is restricted to the 30 percent random 

subsample of children who were also surveyed in fall of first grade [N = 4,150].1 The fall of first 

grade observations are crucial to the analyses described in the methodology section, as they 

facilitate the following calculations and comparisons: 

 

 Test-score change between spring of kindergarten (K) and fall of first grade (1) 



11 

 

 

 

 Test-score change between Fall K and Fall 1, versus between Fall K and Spring K 

 Test-score change between Spring K and Spring 1, versus between Fall 1 and Spring 1 

 

We further restrict the analytic sample by excluding students who repeated kindergarten or first 

grade [N = 3,600], changed schools between kindergarten and first grade [3,500], experienced a 

mid-year classroom change [N = 3,450], were missing basic demographic data or classroom 

indicators [N = 2,450 first graders; N = 2,650 kindergarteners], or were in a classroom in which 

fewer than five classmates were sampled by the ECLS-K, which results in final analytic samples 

of 1,250 first graders and 1,500 kindergarteners. School changers are excluded to avoid 

conflating the impact of summer learning loss with that of changing schools, though it is worth 

noting that including school changers in the analytic sample and conditioning on a “changed 

schools” indicator yields qualitatively similar results. The last restriction increases the precision 

of estimated classroom effects, which are the parameters of primary interest in the current study, 

though we relax this assumption in the sensitivity analysis. The baseline analytic samples include 

100 unique schools, 150 first-grade classrooms, and 200 kindergarten classrooms.    

The ECLS-K data are well suited for an investigation of the practical implications of 

differential summer learning rates for value-added estimates of classroom effects for three 

general reasons. First, while data spanning multiple summer vacations would be ideal for 

reducing sampling error (Koedel & Betts, 2011) and tracking trends in summer learning rates, 

the ECLS-K is the only nationally representative survey of U.S. students that contains both fall 

and spring test scores spanning even one summer that also links students to classrooms. 

Moreover, this enables the estimation of both “within-year” and “cross-year” VAMs using data 



12 

 

 

 

on the same students, which ensures that the results are not driven by changes in the composition 

of teachers’ classrooms.  

Second, the ECLS-K contains data on students’ summer activities (e.g., participation in 

organized summer activities, summer school attendance, trips to the library, math and reading 

practice at home), which facilitate tests of the ability of data on summer activities to reduce the 

bias inherent in “cross-year” VAMs.    

Third, the fall and spring tests administered by the ECLS-K covered the same content and 

were not associated with any stakes or accountability programs, so teachers had no incentive to 

strategically divert resources or instructional time towards a specific test (Fitzpatrick, Grissmer, 

& Hastedt, 2011). Specifically, the ECLS-K administered age-appropriate reading and 

mathematics tests during each wave of the survey that were modelled after other early childhood 

tests that have previously been used in value-added style analyses of educational interventions 

(e.g., Peabody Picture Vocabulary Test [PPVT]; Test of Early Math Ability [TEMA]) (Rock & 

Pollack, 2002). The math examinations tested children’s abilities in the following subjects: 

numbers and shapes, relative size, ordinality and sequence, addition and subtraction, and 

multiplication and division. The reading examinations tested children on letter recognition, 

beginning sounds, ending sounds, sight words, and words in context. Because the achievement 

tests used a two-stage assessment approach, all children did not take identical exams. Hence, the 

ECLS-K computed vertically scaled test scores based on the full set of test items using Item 

Response Theory (IRT) (Rock & Pollack, 2002). The ECLS-K assessments are reliable, as 

evidenced by IRT theta coefficients of internal consistency greater than 0.92 in all waves and 

subjects (Rock & Pollack, 2002). Similarly, our application of the test-retest method for 

identifying overall test measurement error proposed by Boyd et al. (2013) yields reliability 
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estimates 0.87 and 0.95 for spring-K and fall-1 math and reading tests, respectively. In baseline 

analyses test scores are standardized by subject, grade, and wave (fall or spring) to have means 

of zero and standard deviations of one using the full ECLS-K sample (Ballou, 2009). However, 

the main results are robust to measuring student achievement using either unstandardized 

vertically scaled test scores, or the ECLS-K’s theta estimates of latent student ability preferred 

by Quinn (2015), as shown in a sensitivity analysis.2 

Finally, an important caveat to the current study is that in both the fall and spring 

semesters, ECLS-K tests were administered to different students on different days (Fitzpatrick et 

al., 2011). Differences in test dates across schools, classrooms, and even students within 

classrooms are common in the data, as a relatively small number of ECLS-K administrators 

individually met with each student. To avoid conflating summer learning with school-year 

learning that occurred either before the fall test or after the spring test, we adjust all subsequent 

analyses by controlling for the number of days prior to the fall test and after the spring test. 

Fitzpatrick et al.’s (2011) study of the effect of time spent in formal schooling on academic 

achievement finds no evidence of nonlinear effects of days in school on achievement. Moreover, 

Fitzpatrick et al. find that ECLS-K test dates are essentially randomly distributed across students, 

suggesting that the differences in ECLS-K assessment dates do not invalidate the current study. 

The extent to which VAM-based estimates of teacher effectiveness are biased by 

differential rates of summer learning depends upon the distribution of summer learning across 

students and classrooms. Table 1 describes the summer learning in both math and reading that 

occurred during the summer between kindergarten and first grade for the children of the ECLS-

K. Recall that the test scores were standardized using all available test score data, so the means 

and standard deviations (SD) are not precisely 0 and 1 in the analytic sample. The summer 
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learning losses (gains) analyzed in table 1 are adjusted for the exact timing of the test to account 

for the fact that some kindergartners took the test well in advance of the end of kindergarten and 

some first graders took the test well after the start of first grade.3 The average student lost nearly 

one half of a test-score standard deviation (SD) in both subjects. Moreover, the estimated SD of 

summer learning are approximately 0.5 SD as well, suggesting that there is considerable 

variation in summer learning rates across students.  

To investigate how summer learning is distributed across schools and classrooms, table 1 

also reports within-school and within-classroom SD. Variation in summer learning across 

schools, classrooms, and students is further summarized by estimating the overall, within-school, 

and within-classroom SD of summer achievement gains. The “within” SD are estimated by the 

SD of the residuals from regressions of summer achievement on sets of either school or 

classroom fixed effects (FE). The within-school SD are about 90 percent as large as the overall 

SD, indicating that approximately 90 percent of the variation in summer learning exists within as 

opposed to between schools. This within-school variation could be within or between classrooms 

(teachers). In the context of estimating classroom effects using annual test-score data, the latter 

would be particularly troublesome. However, the within-classroom SD are quite close to the 

within-school SD, indicating that approximately 98 percent of the within-school variation in 

summer learning exists within, as opposed to between, classrooms.   

While means and SD provide useful summaries of the variation in summer learning rates, 

it is also instructive to consider the entire distribution. Accordingly, histograms of the summer 

gains and losses in children’s math and reading achievement observed between the spring of 

kindergarten and the fall of first grade are plotted in figures 2.A and 2.B, respectively. The 

distributions of summer learning in both subjects are approximately symmetrical, centered on the 
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mean, and contain a nontrivial fraction of students who experienced either substantial gains or 

losses larger than 0.5 test-score SD. These figures reinforce the idea that nontrivial variation 

exists in students’ summer learning. Similarly, the histograms depicted in figure 3 collapse the 

student-level data to the classroom level and plot the distributions of classroom mean and median 

summer gains (losses). For both math and reading, whether measured by the classroom mean or 

median, the histograms in figure 3 indicate nontrivial variation in summer learning across 

classrooms, potentially biasing cross-year VAM estimates of classroom effectiveness. 

Table 2 summarizes the students who comprise the analytic sample, as well as their 

summer activities. The analytic sample is about 80% white, 7% black, and 8% Hispanic. About 

half the students are female and about 10% reported residing in households below the poverty 

line. The poverty indicator may be an important proxy for children’s exposure to enriching items 

and activities, as Kaushal, Magnuson, & Waldfogel (2011) document an “income gap” in 

children’s participation in organized activities, among other things. Similarly, Gershenson (2013) 

shows that children in low-income households watch significantly more television and engage in 

significantly less conversation with adults than their wealthier counterparts during the summer 

vacation. About 30% of students attended a private school and urban, suburban, and rural 

schools are approximately equally represented.  

In addition to these demographic and school-type variables that are typically available in 

administrative data, the ECLS-K also contains rich data on mothers’ educational attainment and 

children’s summer activities that may be related to summer learning. For example, over 30% of 

mothers hold a four-year college degree. This is a potentially important control variable, as the 

literature on parental involvement finds that highly-educated parents spend more time interacting 

with their children (Guryan, Hurst, & Kearney, 2008) and Gershenson (2013) shows that such 
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gaps are even larger during the summer vacation. Similarly, nearly two thirds of children in the 

analytic sample participated in organized summer activities, which previous research has shown 

to predict academic achievement (Covay & Carbonaro, 2010). Finally, the majority of mothers 

reported frequently practicing math and reading to/with their children during the summer 

vacation, the latter of which previous research has also shown to predict children’s cognitive 

development (e.g., Phillips, 2011).  

 

Methodology 

The ECLS-K data enable two sets of comparisons. For kindergarteners, we compare 

VAM-based rankings of classroom effectiveness generated by fall-to-spring (within-year) 

achievement gains to the potentially less-valid rankings generated by fall-to-fall (cross-year) 

gains; the corresponding VAM specifications are given by equations (1a) and (1b), respectively:      

 
, ,Spring K Fall K K K

i c icic iA A u      βx  (1a) 

and  

 
,1 , .Fall Fall K K K

i c icic iA A u      βx  (1b) 

Similarly, for first graders, we compare VAM-based rankings of classroom effectiveness 

generated by fall-to-spring achievement gains to the arguably less-valid rankings generated by 

spring-to-spring gains, as shown in equations (2a) and (2b), respectively:      

 
,1 ,1 1 1Spring Fall

i c icic iA A u      βx  (2a) 

and 

 
,1 , 1 1 .

Spring Spring K
i c icic iA A u      βx  (2b) 
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In equations (1) and (2), students and classrooms are indexed by i and c, respectively; K 

and 1 indicate kindergarten and first-grade, respectively; A is academic achievement (i.e., 

standardized math and reading scores); the vector x contains some combination of the student 

characteristics and summer activities described in table 2; θ are the classroom FE upon which 

rankings of classroom effectiveness will be based; and u is a mean-zero error term that captures 

the unobserved predictors of achievement (e.g., unobserved household shocks, neighborhood 

effects, illness, parental involvement, and so on). Equations (1) and (2) do not include the year 

and grade FE typically included in VAMs because (1) can only be estimated for one cross 

section of kindergarteners and (2) can only be estimated for one cross section of first graders. We 

stress that these specifications identify classroom, as opposed to teacher, effects because the 

cohort nature of the ECLS-K data contains only one observation per teacher and classroom 

effects are treated as fixed rather than random. For example, we cannot distinguish teacher 

effects from class size effects and thus focus on estimating classroom effects on students’ 

achievement. To examine the ability of the basic demographic variables typically observed in 

administrative data, and that of the rich summer activity variables observed in the ECLS-K, to 

control for summer learning, we estimate equations (1) and (2) using various specifications of x. 
 

We take Ordinary Least Squares (OLS) estimates of (1) and (2) as the baseline for three 

reasons. First, most existing consequential accountability policies employ similar lag-score 

specifications (Papay, 2011). Second, the prevailing consensus among researchers is that this 

relatively straightforward approach likely outperforms more sophisticated models and estimation 

strategies, as most sorting of students to classrooms is based on lagged achievement. For 

example, simulation evidence from Guarino, Reckase, and Wooldridge (2015) find “dynamic 

OLS” estimates to be the most robust to a variety of potential non-random student-teacher 
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assignment scenarios. Third, the ECLS-K only spans one summer vacation, so alternative 

estimators that require additional years of data are infeasible (e.g., first-differenced instrumental 

variable procedures that require multiple lags of student achievement to use as instruments). 

Nonetheless, we conduct a series of sensitivity analyses including estimating gain-score 

specifications, relaxing the “five student per classroom” sample restriction, and estimating un-

weighted regressions to examine the robustness of the main results. 

After estimating equations (1) and (2) we examine the stability of the estimated 

classroom effects by comparing rankings of the estimated classroom effects in (1a) to those in 

(1b), and similarly for (2a) and (2b). Intuitively, only the classroom effect estimates in (1b) and 

(2b) are potentially biased by the non-random distribution of summer learning loss across 

classrooms. We focus on rankings of classroom effects rather than the estimated FE themselves, 

as VAMs frequently produce reliable rankings of teacher effectiveness even when the point 

estimates are inconsistent or imprecisely estimated (Guarino, Reckase, Stacy, & Wooldridge, 

2015) and valid rankings are arguably more policy relevant than point estimates of teachers’ 

effectiveness.  

We compare the rankings generated by cross- and within-year VAMs in two ways that 

are similar to the ways in which previous researchers have compared rankings generated by 

different VAM specifications (e.g., Guarino Reckase, & Wooldridge, 2015; Harris et al., 2012; 

Loeb & Candelaria, 2012; Koedel & Betts, 2007; McCaffrey et al., 2009). First, we estimate the 

Spearman Rank Correlation Coefficient, which is a simple summary statistic of the similarity 

between two rankings. Second, we construct transition matrixes that report the frequency and 

type of classrooms’ quintile-rank switching across specifications, which provide a more nuanced 

understanding of how the rankings change and of the implications for policies that penalize 
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(reward) teachers in the bottom (top) of the effectiveness distribution.     

 

Results 

Table 3 reports Spearman rank correlations of the comparisons between estimated 

kindergarten classroom effects generated by equations (1a) and (1b) and between estimated first 

grade classroom effects generated by equations (2a) and (2b) for the baseline specification as 

well as several alternative specifications. The Spearman rank correlations suggest that estimated 

classroom effects on math achievement are less robust to test timing than those on reading 

achievement, though for kindergarten classrooms neither is particularly stable. The greater 

robustness of the reading rankings might be due to some combination of the relatively higher 

reliability of the ECLS-K reading assessments and the slightly greater variation in math summer 

learning rates, though it is impossible to identify the exact causes given the available data; it 

would be interesting to see if this pattern holds in similar analyses of other district or state 

administrative data.4 

Interestingly, these results are quite robust to the choice of statistical controls in x, 

functional form of the test scores, weighting, and sampling restrictions for both subjects. 

Specifically, controlling for observed student characteristics and summer activities does not 

change the estimated Spearman rank correlation for either subject. The inability of conditioning 

on children’s summer activities to improve the validity of the cross-year VAM estimates likely 

results from some combination of the general findings that conditioning on lagged achievement 

alone is enough to obtain unbiased estimates of teacher effectiveness (Chetty et al., 2014; Kane 

& Staiger, 2008), that only about 10% of the variation in summer learning rates can be explained 

by observed student and household characteristics (Downey et al., 2004), and that the ECLS-K 
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information on summer activities are not particularly detailed with regards to the quantity or 

quality of summer programs and parental involvement. Gain-score VAMs that restrict α to equal 

one perform slightly better than the baseline lag-score specification for math achievement, as the 

Spearman rank correlation is about 12 percentage points larger than that for the baseline model, 

and this increase in stability is entirely concentrated in the bottom half of the effectiveness 

distribution. However, there are no such differences between the lag- and gain-score models for 

reading achievement, which is consistent with Quinn’s (2015) analysis of racial differences in 

average summer learning rates.  

The findings for both subjects remain qualitatively similar across the remaining 

sensitivity analyses. Specifically, these include estimating the baseline models using either 

unstandardized (raw) vertically scaled test scores or theta-score estimates of students’ latent 

ability, estimating un-weighted baseline models that do not adjust for the ECLS-K’s nonrandom 

sampling frame, relaxing the classroom-size sample restriction from five students per classroom 

to three students per classroom but only ranking classrooms with at least five students, and 

relaxing the classroom-size sample restriction from five students per classroom to three students 

per classroom and ranking all classrooms. The similarity between the weighted (baseline) and 

un-weighted results suggest that the VAMs are correctly specified and that the main results are 

not driven by the potential drop in precision associated with the use of sampling weights (Solon 

et al., 2015). Similarly, the main results’ robustness to the students-per-classroom restriction 

suggests that the findings are not driven by imprecision associated with the relatively small 

number of students per classroom. 

The correlations reported for first grade classrooms in table 3 are qualitatively similar to 

those for kindergarten classrooms in that the year-to-year and fall-to-spring estimates are 
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positively but not perfectly correlated and classroom-effect rankings for reading are more robust 

to test timing than those for math. However, a notable difference between the fall-fall and spring-

spring analyses is that the spring-spring results for first-grade classrooms are more stable for 

both math and reading: the Spearman correlations are between 0.8 and 0.9. As in the analysis of 

kindergarten classrooms reported in table 3, the first-grade results are remarkably robust to a 

variety of alternative specifications, assessments, weighting schemes, and sample restrictions.  

The only sensitivity analysis to yield a substantive difference from the baseline results is 

the gain score model, which yields less stable results for both subjects. One possible explanation 

of this difference is that the mechanism by which students are assigned to classrooms in 

kindergarten is different from the mechanism used in first grade. Specifically, classroom 

assignments in first grade may rely more on students’ academic ability and past performance, as 

such information is more readily available to school administrators for students entering first 

grade than for students entering kindergarten. If this is true, conditioning on lagged achievement 

plays a larger role in identifying valid estimates of first-grade classroom effects than 

kindergarten classroom effects (e.g., Chetty et al., 2014; Quinn, 2015). 

 While the correlations presented in table 3 indicate substantive differences between the 

classroom-effectiveness rankings generated by fall-to-spring and fall-to-fall achievement gains, 

particularly in math, transition matrixes that report the movement of classrooms across quintiles 

of the classroom-effectiveness distribution provide a more nuanced understanding of the stability 

of such rankings. Table 4 presents two such transition matrixes for math and reading 

achievement based on the baseline VAM that conditions on the elements of x typically observed 

in administrative data. Like in table 3, the transition matrixes for the alternative specifications 

considered above are qualitatively similar and thus not reported in the interest of brevity. The 
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diagonal elements of the transition matrixes reported in table 4 represent classrooms that were in 

the same quintile of the effectiveness rankings generated by fall-to-fall and fall-to-spring VAMs. 

As expected given the results in table 3, the figures along the diagonals are significantly lower 

than 100%, reinforcing the general finding that kindergarten classroom effectiveness rankings 

are sensitive to the timing of the assessments used in the VAM. Indeed, only about half of 

classrooms ranked in the lowest or highest quintiles of math effectiveness remained in the same 

quintile in both the within-year and cross-year rankings. Furthermore, nearly ten percent of these 

classrooms experienced large swings from the highest to lowest quintile, or vice versa, 

depending on whether a within-year or cross-year VAM was estimated. As suggested by the 

higher correlations for reading in table 3, the transition matrix for reading VAMs reported in 

table 4 suggests significantly more stability: About 60% of bottom-quintile classrooms and 70% 

of top-quintile classrooms remain in the same quintile regardless of whether cross-year or 

within-year test scores are used and large changes between the top and bottom quintiles are 

nonexistent. Together, the results presented in tables 3 and 4 suggest that a nontrivial subset of 

teachers may be misclassified by evaluations that rely on cross-year fall-fall VAMs, and that 

such misclassifications are both more frequent and larger in magnitude with regards to math 

effectiveness than reading effectiveness. 

 Table 5 replicates the transition matrix analysis in table 4 for specifications (2a) and (2b), 

comparing rankings of first-grade classrooms generated by within-year fall-to-spring VAMs to 

those generated by cross-year spring-to-spring VAMs. The transition matrixes reported in table 5 

show that the spring-spring VAMs are more stable than the fall-fall VAMS, particularly for 

reading, and large swings across multiple quintiles are exceedingly rare in both subjects. Still, 

20% to 35% of teachers who are in either the top or bottom quintile in one ranking do not remain 
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in the same quintile when the timing of the lagged test score is changed. The results presented in 

table 5 suggest that a nontrivial subset of teachers may be misclassified by evaluations that rely 

on cross-year spring-spring VAMs, that such misclassifications are both more frequent and 

larger in magnitude with regards to math effectiveness than reading effectiveness, and that such 

misclassifications are both less frequent and smaller in magnitude than analogous 

misclassifications associated with the cross-year fall-fall VAMs discussed in table 4.        

 

Discussion and Policy Implications 

The majority of current test based-accountability and teacher-evaluation programs that 

rely on teacher, classroom, or school value-added measures compute value-added by measuring 

achievement gains from one academic year to the next. For example, the Houston and Nashville 

school districts administer standardized tests each spring that measure students’ achievement 

gains between the spring of grade g-1 and the spring of grade g. This is potentially problematic, 

as students’ summer gains and losses are incorrectly attributed to students’ grade-g teachers and 

schools. Indeed, previous research has discussed the potential bias in VAM-based estimates of 

school effectiveness caused by the use of “cross-year” or spring-to-spring achievement gains 

(Downey et al., 2008; McEachin & Atteberry, 2014). However, the practical importance of this 

bias in the context of VAM-based measures of teacher effectiveness is unknown.           

The current study contributes to this gap in the literature by providing evidence on the 

validity of value-added estimates of classroom effects generated by fall-to-fall and spring-to-

spring “cross-year” VAMs relative to arguably more valid fall-to-spring “within-year” VAMs. 

We consistently find that estimated classroom effects are unstable between “cross-year” and 

“within-year” VAMs. Specifically, only 50% of kindergarten classrooms ranked in the lowest 
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quintile by a fall-to-spring math achievement VAM remain in the lowest quintile of a fall-to-fall 

VAM, and about 10% of those classrooms move to the highest quintile. These results suggest 

that policies that reward teachers based on their position in the distribution of teacher effects 

estimated by “cross-year” VAMs, such as Nashville’s Project on Incentives in Teaching 

(POINT) program (Spring et al., 2011), misclassify a nontrivial fraction of teachers.     

Similarly, about 65% of first-grade classrooms ranked in the lowest quintile by a fall-to-

spring math achievement VAM remain in the lowest quintile of a spring-to-spring VAM, though 

extreme swings between the top and bottom quintiles are exceedingly rare among first-grade 

teachers. This may suggest that spring testing is preferable to fall testing, though we cannot rule 

out the possibility that estimates of first-grade classroom effects are inherently more stable than 

those of kindergarten classrooms. Our results are largely consistent with those of school-level 

VAM analyses, which also stress the importance of test timing in the context of VAM-based 

accountability schemes. However, because the current study is limited to one cohort of students 

and only observes teachers during one academic year, future work that conducts similar analyses 

of longitudinal administrative data spanning multiple cohorts of students who were administered 

similar fall and spring tests will prove fruitful. Finally, an interesting non-finding of the current 

study is that conditioning on students’ characteristics and summer activities in “cross-year” 

VAMs does not significantly improve the stability of estimated classroom effects.  

To place these results in the context of the broader literature on the stability of value-

added estimates of teacher effectiveness, it is instructive to compare the estimated rank 

correlations between “cross-year” and “within-year” VAMs to those between different years and 

subjects in the existing literature. The fall-fall math and reading correlations of 0.5 and 0.8, 

respectively, fall at the high end of estimated intertemporal correlations. The spring-spring math 
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and reading correlations of 0.8 and 0.9 are larger. For example, McCaffrey et al. (2009) find 

intertemporal correlations as large as 0.6 and Goldhaber and Hansen (2013) find correlations 

between 0.6 and 0.8 for math and between 0.5 and 0.7 for reading. The “cross-year” and “within-

year” rankings estimated in the current study are also more stable than those across subjects, as 

studies of the stability of teacher rankings across math and reading find rank correlations of 

about 0.6 (Koedel & Betts, 2007; Loeb et al., 2012). However, despite the positive and 

sometimes relatively high rank correlation coefficients estimated in the current study, some 

critics have argued that rank correlations of these magnitudes indicate that VAM-based estimates 

of teacher effectiveness are invalid and thus should not be used to make high-stakes personnel 

decisions (Hill, 2009).   

While the ECLS-K data provide a unique opportunity to evaluate the practical 

implications of summer learning loss for VAM-based estimates of classroom effectiveness using 

nationally representative data and provide rich information on students’ summer activities, these 

data are not without limitations. Specifically, three limitations are worth mentioning in the hope 

that future research might address these shortcomings using different data. First, as mentioned in 

the Methodology section, the fact that the ECLS-K followed one cohort of children means that 

teachers are only observed at one time point. This limits the types of analyses that can be 

conducted; for example, ECLS-K data cannot be used to examine the implications of summer 

learning loss for estimating the intertemporal stability of VAM-based estimates of teacher 

effectiveness. Second, because the ECLS-K sampled students within classrooms, only a small 

number of student observations are available for certain classrooms, which limits the precision of 

estimated classroom effects. Finally, while the ECLS-K is a nationally representative sample of 

the 1998-99 U.S. kindergarten cohort, it is not necessarily a representative sample of the teachers 
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who are subject to high-stakes accountability programs or evaluated by VAM-based measures of 

effectiveness. This is because most such policies and programs in the U.S. target grades three 

through eight. For these reasons, conducting similar analyses using state- or district-level 

administrative data would usefully further our understanding of how summer learning affects the 

validity of VAM-based measures of teacher effectiveness.       

Taken at face value, the results of the current study suggest that there are benefits to 

testing students twice per year. In addition to providing arguably more accurate estimates of 

teacher and school effectiveness, a biannual fall-spring testing regime would provide teachers 

and school administrators with accurate and current information on students’ achievement at the 

start of the school year. For example, such information could be used to design review sessions 

and lesson plans early in the fall semester. Similarly, these data could be used to identify the 

students who experienced the greatest levels of summer learning loss and target high-quality 

summer programs to such students in subsequent summers. Building Educated Leaders for Life 

(BELL) and KindergARTen are two examples of full-day six-week summer programs that are 

known to improve academic achievement (Borman et al., 2009; Chaplin & Capizzano, 2006).   

Biannual fall-spring testing is not costless, of course, for a variety of reasons. First, if 

some teachers have persistent effects on student achievement that operate through effects on 

students’ summer activities or parental involvement, fall-spring VAMs would fail to capture this 

dimension of teacher effectiveness (von Hippel, 2009). Second, there are explicit costs in terms 

of both time and money associated with doubling the number of tests. Downey et al. (2008) 

rightly note that in the case of school evaluation, within-year VAMs could be implemented 

without doubling the number of tests simply by shifting every other spring test to the following 

fall. However, in the context of teacher evaluation such a reshuffling would further reduce the 
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number of teachers teaching in “tested grades” who can be evaluated by VAM-based measures. 

Finally, it is possible that using within-year fall-spring VAM scores to evaluate teachers would 

encourage teachers to game the system by artificially depressing fall scores (Baker et al., 2010) 

and effectively penalize teachers who create achievement gains prior to the fall baseline score 

when the fall baseline is not administered early enough in the school year. If teachers reacted in 

this way, measures of both VAM-based teacher effectiveness and students’ summer learning 

would be systematically biased. 

As a result of these concerns and related political considerations, biannual fall-spring 

testing is unlikely to be instituted on a large scale in the immediate future. Nonetheless, the 

instability between “cross-year” and “within-year” teacher VAMs documented in the current 

study has at least four implications for current education policy and practice. First, these findings 

suggest that in addition to the statistical properties of VAM specifications and estimators; the 

sorting of students and teachers into schools, tracks, and classrooms; and the content of student 

assessments; researchers, educators, and policymakers should pay greater attention to the timing 

of the assessments used by VAM and related effectiveness measures. More generally, these 

results highlight the importance of summer learning in educational policy and practice, regarding 

both how summer learning complicates evaluation of the efficacy of educational interventions 

and how schools and teachers might influence students’ summer learning. 

Second, the robust finding that controlling for the summer activities observed in the 

ECLS-K does not noticeably improve the stability of effectiveness rankings suggests that 

collecting such information is unlikely to be a good use of school districts’ scarce resources. This 

result is not entirely surprising, as Downey et al. (2004) find in the ECLS-K that only about 10% 

of the variation in summer learning rates can be explained by observed student and household 
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characteristics. However, the inability of the ECLS-K’s information on students’ summer 

activities to either predict summer learning or improve the performance of cross-year VAMs 

may result from the imprecise nature of the summer activity variables; for example, the ECLS-K 

summer activity variables do not account for the quality or academic orientation of summer 

programs. Accordingly, it would be useful for future research to verify this non-finding in other 

contexts, using data on participation in other types of summer activities, and using data on 

summer programs’ focus and quality.  

Third, the greater stability of the spring-spring first-grade rankings suggests that when 

“cross-year” VAMs are necessary due to data or resource limitations, conducting annual 

assessments in the spring may be preferable to doing so in the fall. An important caveat to this 

result is that the spring-spring and fall-fall analyses of the ECLS-K data were necessarily 

conducted on first-grade and kindergarten classrooms, respectively, and the result could be 

driven by grade-specific differences in either the composition of the teaching force or in the way 

students are sorted into classrooms. Again, it would be useful to further investigate the relative 

stability of fall-fall versus spring-spring “cross-year” VAMs using data that permits both 

analyses of the same teachers and students. Specifically, to analyze teachers in grade g, this 

would require data on four assessments: spring of g-1, fall and spring of g, and fall of g+1. 

Finally, the current study reinforces the importance of using multiple measures to 

evaluate teachers (e.g., Polikoff & Porter, 2014). There are tradeoffs associated with each 

approach to measuring teacher effectiveness and no one measure is perfect. Specifically, when 

cross-year (e.g., spring-to-spring) VAM scores are used as a measure of teacher effectiveness, it 

is perhaps particularly important to augment such measures with alternatives that are not 

sensitive to variation in students’ summer learning rates.      
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Notes 

1. This, and all subsequent sample sizes, are rounded to nearest 50 in accordance with NCES 

regulations for the use of restricted ECLS-K data. 

2. Theta test scores and theta coefficients of internal consistency are different constructs. The 

former capture student-specific aptitude in the academic skills measured by the ECLS-K 

assessments. The latter measure each test’s reliability, or extent to which rank orders of student 

performance would be preserved if students took the same test multiple times (with zero memory 

of previous attempts).   

3. Specifically, we proceed in two steps. First, we follow Burkam, Ready, Lee, and LoGerfo 

(2004) in regressing the “summer gain score” on a constant, the number of school days that 

occurred after the spring-kindergarten test, and the number of school days that occurred before 

the fall-first grade test. We then compute each student’s “true” summer gain (loss) by subtracting 

the estimated contribution of school days from the total gain (loss) experienced between the 

spring-kindergarten and fall-first grade tests. The average of these “true” summer learning 

estimates equals the estimated intercept from the regression in step 1. 

4. The theta coefficients of internal consistency for the four math are between 0.92 and 0.94 

while the corresponding reading coefficients are between 0.93 and 0.97 (Rock & Pollack, 2002).    
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Figure 1. How Summer Learning Impacts Cross-Year Value-Added (VA) Estimates 

 

 
 

Notes: Dashed lines represent summer learning. Solid lines represent school-year learning. 

Dotted lines represent cross-year “spring-to-spring” learning. 
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Figure 2. Distribution of Summer Achievement Gains 

 

Figure 2A. Distribution of Summer Math Gains 

 
 

Figure 2B. Distribution of Summer Reading Gains 

 
Notes: The histograms in figure 2 are weighted to adjust for unequal probabilities of sample 

selection. The gain scores are adjusted to account for the timing of assessments.  
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Figure 3. Distribution of Classroom-Level Summer Learning Gains 

 

Figure 3.A Mean Math Gains   Figure 3.B Median Math Gains 

 
 

Figure 3.C Mean Reading Gains  Figure 3.D Median Reading Gains 

 
 

Notes: The histograms in figure 3 are weighted to adjust for unequal probabilities of sample 

selection. The gain scores are adjusted to account for the timing of assessments.  
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Table 1: Descriptive Statistics of Summer Learning 

 Mean S.D. 

Math Summer Learning Gain -0.43 0.56 

      Within-School S.D.  0.50 

      Within-Classroom S.D.  0.49 

Reading Summer Learning Gain -0.48 0.44 

      Within-School S.D.  0.41 

      Within-Classroom S.D.  0.40 

   

Kindergarten Students 1,500 

First-grade Students 1,250 

Kindergarten Classrooms 200 

First-grade Classrooms 150 

Schools  100 

Notes: All estimates are weighted to account for the unequal probabilities of sample selection 

by NCES-provided sampling weights. Means and SD are computed for the 1,500 students for 

whom summer learning gains (losses) can be computed. Sample sizes are rounded to the 

nearest 50, in accordance with NCES regulations for restricted-use ECLS-K data. Summer 

learning gains are adjusted for the timing of both spring and fall tests and are normalized to 

have mean zero and standard deviation one.  
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Table 2: Descriptive Statistics of Student Characteristics and Summer Activities 

 Mean S.D. 

Student Characteristics   

White 79.4%  

Black 6.6%  

Hispanic  7.7%  

Other race/ethnicity 6.2%  

Female 51.1%  

Poverty 10.3%  

Does not speak English at Home 2.9%  

Has Individualized Education Plan (IEP) 4.3%  

Kindergarten Redshirt 7.9%  

Attends Private School 29.5%  

Attends Urban School 28.9%  

Attends Suburban School 36.2%  

Attends Rural School 34.8%  

Mom No H.S. Degree  5.5%  

Mom H.S. Degree 33.2%  

Mom Some College 30.4%  

Mom Bachelor’s Degree or more 30.9%  

   

Summer Activities   

Organized summer activities 60.6%  

Attended summer school 10.2%  

# of trips to library/bookstore 7.2 7.1 

Child never practice math 19.3%  

Child sometimes practices math 72.0%  

Child practices math everyday 8.7%  

Mother never reads to child 2.5%  

Mother sometimes reads to child 50.2%  

Mother reads to child everyday 47.3%  

   

N Children 1,500 

N Schools 100 

Notes: Means and standard deviations (SD) are weighted by NCES provided sampling weights 

to account for unequal probabilities of sample selection. SD are only reported for non-binary 

variables. 
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Table 3: Spearman Correlation Coefficients for Ranking Comparisons  

 
Kindergarten Classrooms 

Fall-Spring vs. Fall-Fall Gains 

First-Grade Classrooms 

Fall-Spring vs. Spring-Spring 

Math Achievement    

No controls  0.45 0.79 

Baseline 0.45 0.77 

Rich control set 0.45 0.80 

Gain Score VAM 0.57 0.66 

Baseline, un-standardized 0.43 0.79 

Baseline, Theta test scores 0.39 0.78 

Baseline, un-weighted 0.46 0.81 

Baseline, relaxed sample 0.49 0.80 

Baseline, relaxed sample 

and all classrooms  
0.46 0.80 

   

Reading Achievement   

No controls  0.80 0.92 

Baseline 0.80 0.93 

Rich control set 0.80 0.92 

Gain Score VAM 0.81 0.84 

Baseline, un-standardized 0.78 0.92 

Baseline, Theta test scores 0.79 0.87 

Baseline, un-weighted 0.78 0.93 

Baseline, relaxed sample 1 0.81 0.91 

Baseline, relaxed sample 2 0.78 0.90 

Students 1,500 1,250 

Classrooms 200 150 

Students (sample 1) 2,100 1,900 

Classrooms (sample 1) 200 150 

Students (sample 2) 2,100 1,900 

Classrooms (sample 2) 400 400 

Notes: The correlation coefficients reported for kindergarten (first grade) in this table compare 

rankings of classroom effects generated by equations 1a and 1b (2a and 2b) of the main text. 
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Table 4: Quintile Transitions of Kindergarten Classroom Effects Generated by Fall-

Spring and Fall-Fall Gains 

 Fall-fall, baseline model  

 Math Achievement 

Fall-Spring Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5 

Quintile 1 55.6 11.1 13.9 11.1 8.3 

Quintile 2 11.1 30.6 22.2 27.8 8.3 

Quintile 3 8.3 30.6 27.8 19.4 13.9 

Quintile 4 16.7 16.7 22.2 19.4 25.0 

Quintile 5 8.3 11.1 13.9 22.2 44.4 

 

 Reading Achievement 

Fall-Spring Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5 

Quintile 1 61.1 19.4 16.7 2.8 0.0 

Quintile 2 25.0 41.7 19.4 11.1 2.8 

Quintile 3 11.1 30.6 36.1 22.2 0.0 

Quintile 4 2.8 5.6 22.2 44.4 25.0 

Quintile 5 0.0 2.8 5.6 19.4 72.2 

Notes: The statistics reported in this table compare rankings of classroom effects 

generated by equations 1a and 1b of the main text. The sample contains 1,500 students in 

200 classrooms. 
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Table 5: Quintile Transitions of First-Grade Classroom Effects Generated by Fall-

Spring and Spring-Spring Gains 

 Fall-fall, baseline model 

 Math Achievement  

Fall-Spring Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5 

Quintile 1 64.7 23.5 8.8 0.0 2.9 

Quintile 2 24.2 39.4 27.3 9.1 0.0 

Quintile 3 11.8 29.4 23.5 23.5 11.8 

Quintile 4 0.0 6.1 24.2 48.5 21.2 

Quintile 5 0.0 0.01 18.2 18.2 63.6 

 

 Reading Achievement 

Fall-Spring Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5 

Quintile 1 79.4 17.6 2.9 0.0 0.0 

Quintile 2 21.2 54.5 24.2 0.0 0.0 

Quintile 3 0.0 20.6 44.1 32.4 2.9 

Quintile 4 0.0 6.1 30.3 42.4 21.2 

Quintile 5 0.0 0.0 0.0 24.2 75.8 

Notes: The statistics reported in this table compare rankings of classroom effects 

generated by equations 2a and 2b of the main text. The sample contains 1,250 students in 

150 classrooms. 

 

 


